104 research outputs found

    Monolithic CIGS-Perovskite Tandem Cell for an Optimal Light Harvesting Without Current Matching

    Get PDF
    We present a novel monolithic architecture for optimal light harvesting in multijunction thin film solar cells. In the configuration we consider, formed by a perovskite (PVK) cell overlying a CIGS cell, the current extracted from the two different junctions is decoupled by the insertion of a dielectric nonperiodic photonic multilayer structure. This photonic multilayer is designed by an inverse integration approach to confine the incident sunlight above the PVK band gap in the PVK absorber layer, while increasing the transparency for sunlight below the PVK band gap for an efficient coupling into the CIGS bottom cell. To match the maximum power point voltages in a parallel connection of the PVK and CIGS cells, the latter is divided into two subcells by means of a standard three-laser scribing connection. Using realistic parameters for all the layers in the multijunction architecture we predict power conversion efficiencies of 28%. This represents an improvement of 24% and 26% over the best CIGS and PVK single-junction cells, respectively, while at the same time outperforms the corresponding current-matched standard tandem configuration by more than two percentage points.Peer ReviewedPostprint (author's final draft

    Properties of Contact and Bulk Impedances in Hybrid Lead Halide Perovskite Solar Cells Including Inductive Loop Elements

    Get PDF
    Impedance spectroscopy offers access to all the different electronic and ionic processes taking place simultaneously in an operating solar cell. To date, its use on perovskite solar cells has been challenging because of the richness of the physical processes occurring within similar time domains. The aim of this work is to understand the general impedance response and propose a general equivalent circuit model that accounts for the different processes and gives access to quantitative analysis. When the electron-selective contacts and the thickness of the perovskite film are systematically modified, it is possible to distinguish between the characteristic impedance signals of the perovskite layer and those arising from the contacts. The study is carried out using mixed organic lead halogen perovskite (FA(0.85)MA(0.15)Pb(I0.85Br0.15)(3)) solar cells with three different electron-selective contacts: SnO2, TiO2, and Nb2O5. The contacts have been deposited by atomic layer deposition (ALD), which provides pinhole-free films and excellent thickness control in the absence of a mesoporous layer to simplify the impedance analysis. It was found that the interfacial impedance has a rich structure that reveals different capacitive processes, serial steps for electron extraction, and a prominent inductive loop related to negative capacitance at intermediate frequencies. Overall, the present report provides insights into the impedance response of perovskite solar cells which enable an understanding of the different electronic and ionic processes taking place during device operation.The work at INAM-UJI was supported by Generalitat Valenciana project PROMETEO/2014/020 and MINECO of Spain under Project MAT2013-47192-C3-1-R. A.G. thanks the Spanish Ministerio de EconomĂ­a y Competitividad for a RamĂłn y Cajal Fellowship (RYC-2014-16809). T.J.J. gratefully acknowledges the GRAPHENE project supported by the European Commission Seventh Framework Program under Contract 604391

    Optical analysis of CH3NH3SnxPb1–xI3 absorbers: a roadmap for perovskite-on-perovskite tandem solar cells

    Get PDF
    Organic–inorganic perovskite structures in which lead is substituted by tin are exceptional candidates for broadband light absorption. Herein we present a thorough analysis of the optical properties of CH3NH3SnxPb1–xI3 films, providing the field with definitive insights about the possibilities of these materials for perovskite solar cells of superior efficiency. We report a user's guide based on the first set of optical constants obtained for a series of tin/lead perovskite films, which was only possible to measure due to the preparation of optical quality thin layers. According to the Shockley–Queisser theory, CH3NH3SnxPb1–xI3 compounds promise a substantial enhancement of both short circuit photocurrent and power conversion efficiency in single junction solar cells. Moreover, we propose a novel tandem architecture design in which both top and bottom cells are made of perovskite absorbers. Our calculations indicate that such perovskite-on-perovskite tandem devices could reach efficiencies over 35%. Our analysis serves to establish the first roadmap for this type of cells based on actual optical characterization data. We foresee that this study will encourage the research on novel near-infrared perovskite materials for photovoltaic applications, which may have implications in the rapidly emerging field of tandem devices.Unión Europea Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 307081 (POLIGHT)España, Ministerio de Economía y Competitividad AT2014-54852- R

    Accelerating Materials Development via Automation, Machine Learning, and High-Performance Computing

    Get PDF
    Successful materials innovations can transform society. However, materials research often involves long timelines and low success probabilities, dissuading investors who have expectations of shorter times from bench to business. A combination of emergent technologies could accelerate the pace of novel materials development by 10x or more, aligning the timelines of stakeholders (investors and researchers), markets, and the environment, while increasing return-on-investment. First, tool automation enables rapid experimental testing of candidate materials. Second, high-throughput computing (HPC) concentrates experimental bandwidth on promising compounds by predicting and inferring bulk, interface, and defect-related properties. Third, machine learning connects the former two, where experimental outputs automatically refine theory and help define next experiments. We describe state-of-the-art attempts to realize this vision and identify resource gaps. We posit that over the coming decade, this combination of tools will transform the way we perform materials research. There are considerable first-mover advantages at stake, especially for grand challenges in energy and related fields, including computing, healthcare, urbanization, water, food, and the environment.Comment: 22 pages, 3 figure

    Resolving Nonlinear Recombination Dynamics in Semiconductors via Ultrafast Excitation Correlation Spectroscopy: Photoluminescence versus Photocurrent Detection.

    Get PDF
    We explore the application of excitation correlation spectroscopy to detect nonlinear photophysical dynamics in two distinct semiconductor classes through time-integrated photoluminescence and photocurrent measurements. In this experiment, two variably delayed femtosecond pulses excite the semiconductor, and the time-integrated photoluminescence or photocurrent component arising from the nonlinear dynamics of the populations induced by each pulse is measured as a function of inter-pulse delay by phase-sensitive detection with a lock-in amplifier. We focus on two limiting materials systems with contrasting optical properties: a prototypical lead-halide perovskite (LHP) solar cell, in which primary photoexcitations are charge photocarriers, and a single-component organic-semiconductor diode, which features Frenkel excitons as primary photoexcitations. The photoexcitation dynamics perceived by the two detection schemes in these contrasting systems are distinct. Nonlinear-dynamic contributions in the photoluminescence detection scheme arise from contributions to radiative recombination in both materials systems, while photocurrent arises directly in the LHP but indirectly following exciton dissociation in the organic system. Consequently, the basic photophysics of the two systems are reflected differently when comparing measurements with the two detection schemes. Our results indicate that photoluminescence detection in the LHP system provides valuable information about trap-assisted and Auger recombination processes, but that these processes are convoluted in a nontrivial way in the photocurrent response and are therefore difficult to differentiate. In contrast, the organic-semiconductor system exhibits more directly correlated responses in the nonlinear photoluminescence and photocurrent measurements, as charge carriers are secondary excitations only generated through exciton dissociation processes. We propose that bimolecular annihilation pathways mainly contribute to the generation of charge carriers in single-component organic semiconductor devices. Overall, our work highlights the utility of excitation correlation spectroscopy in modern semiconductor materials research, particularly in the analysis of nonlinear photophysical processes, which are deterministic for their electronic and optical properties

    Monolithic CIGS-Perovskite tandem cell for optimal light harvesting without current matching

    Get PDF
    We present a novel monolithic architecture for optimal light harvesting in multijunction thin film solar cells. In the configuration we consider, formed by a perovskite (PVK) cell overlying a CIGS cell, the current extracted from the two different junctions is decoupled by the insertion of a dielectric nonperiodic photonic multilayer structure. This photonic multilayer is designed by an inverse integration approach to confine the incident sunlight above the PVK band gap in the PVK absorber layer, while increasing the transparency for sunlight below the PVK band gap for an efficient coupling into the CIGS bottom cell. To match the maximum power point voltages in a parallel connection of the PVK and CIGS cells, the latter is divided into two subcells by means of a standard three-laser scribing connection. Using realistic parameters for all the layers in the multijunction architecture we predict power conversion efficiencies of 28%. This represents an improvement of 24% and 26% over the best CIGS and PVK single-junction cells, respectively, while at the same time outperforms the corresponding current-matched standard tandem configuration by more than two percentage points.Peer ReviewedPostprint (author's final draft
    • …
    corecore